有任何问题,请联系技术部门或销售办事处
2016年9月22日,国际核酸类重要学术期刊《Nucleic Acids Research》杂志在线发表了中国科学院华南植物园区永祥研究组的一篇研究论文,研究在氧化胁迫耐受基因(OXIDATIVE STRESS )研究方面取得新进展。华南植物园博士后何玉梅为论文第一作者,区永祥研究员为论文通讯作者。
环境胁迫导致作物减产,生物胁迫和非生物胁迫都会扰乱细胞代谢平衡,引起细胞内活性氧水平升高,进而导致细胞损伤和死亡。区永祥研究团队一直致力于解析植物在应答引起氧化损伤的重金属胁迫过程中的分子机理。研究人员在裂殖酵母中阐明了一条新的镉诱导的二硫化物胁迫调控途径——Oxs1-Pap1途径。该途径在真核细胞中高度保守。来源于人类、老鼠、拟南芥中异源蛋白Oxs1和Pap1蛋白在体外均可发生互作,这些异源蛋白质在裂殖酵母中可提高镉的胁迫性。推测Oxs1参与调控生物体内保守的胁迫调控途径。
实验前期研究发现拟南芥OXS2基因作为一个转录因子调控植物胁迫逃逸。华南植物园博士贺立龙等科研人员在对玉米的研究中发现玉米OXS2家族通过激活一个甲基转移酶样基因,进而提高植物对重金属镉的抗性。研究成果题为“Maize OXIDATIVE STRESS2 Homologs Enhance Cadmium Tolerance in Arabidopsis through Activation of a Putative SAM-Dependent Methyltransferase Gene1”。
拟南芥中OXS3蛋白很可能作为一个组蛋白修饰因子,从而响应重金属胁迫和氧化胁迫。华南植物园助理研究员王昌虎等科研人员通过表达水稻中OXS3基因家族成员,可以显著降低水稻谷粒中的镉含量。由于中国耕地污染问题,导致近年来出现了许多高镉稻米产品。土壤修复等手段不能在短期内有效解决这一问题,因此通过创制低镉累积水稻新种质为保障粮食安全提供了新的解决方案。研究成果题为“Reduction of Cd in Rice through Expression of OXS3-like Gene Fragments”。
原文链接:
A Pap1–Oxs1 signaling pathway for disulfide stress in Schizosaccharomyces pombe
原文摘要:
We describe a Pap1–Oxs1 pathway for diamide-induced disulfide stress inSchizosaccharomyces pombe, where the nucleocytoplasmic HMG protein Oxs1 acts cooperatively with Pap1 to regulate transcription. Oxs1 and Pap1 form a complex when cells are exposed to diamide or Cd that causes disulfide stress. When examined for promoters up-regulated by diamide, effective Pap1 binding to these targets requires Oxs1, and vice versa. With some genes, each protein alone enhances transcription, but the presence of both exerts an additive positive effect. In other genes, although transcription is induced by diamide, Oxs1 or Pap1 plays a negative role with full de-repression requiring loss of both proteins. In a third class of genes, Oxs1 positively regulates expression, but in its absence, Pap1 plays a negative role. The Oxs1–Pap1 regulatory interaction appears evolutionarily conserved, as heterologous (human, mouse andArabidopsis) Oxs1 and Pap1-homologues can bind interchangeably with each other in vitro, and at least in the fission yeast, heterologous Oxs1 and Pap1-homologues can substitute for S. pombe Oxs1 and Pap1 to enhance stress tolerance.