首页>互动交流

联系尚宝

有任何问题,请联系技术部门或销售办事处

400-611-000718503800002

浏览历史

Nat Med:上海交大常兴课题组发现DNA碱基编辑新方法

日期:2016-10-17 16:41:17

 2016年10月10日,国际学术权威刊物自然出版集团旗下子刊《Nature Methods》杂志在线发表了上海交通大学医学院健康科学研究所常兴研究组题为Targeted AID -mediated mutagenesis (TAM) enablesefficient genomic diversification in mammalian cells 的最新研究成果,研究报道了一种利用靶向性胞嘧啶脱氨酶在体内实现高效率和高通量的DNA碱基编辑的新方法。

单核苷酸的多样性是遗传多样性的主要来源,是分子进化的动力和很多疾病的直接诱因。然而由于哺乳动物基因组的高度稳定性,在哺乳动物细胞内很难高效和高通量地诱导单核苷酸的突变,进而研究这些突变的功能。虽然通过CRISPR等基因编辑技术,可以实现较高效的DNA切割和基因敲除,但由于同源重组(HDR)的效率低下,现有的CRISPR技术对于体内构建单核苷酸突变仍处于低效阶段。

靶向性AID介导的核苷酸突变(TAM)这种新的研究方法,有可能改变这一现状。有别于绝大多数体细胞基因组,适应性免疫系统在淋巴细胞发育过程中可以进行高效编辑,对抗原受体进行高效突变,产生近乎无限的抗原受体库,用以抵御可能的病原体入侵。受这一“突变自我”机制的启发,博士研究生马云青和张佳元在研究员常兴的指导下发现,当把核酸酶缺陷的Cas9蛋白和诱导抗体高频突变的胞嘧啶脱氨酶AID融合后,在sgRNA靶向的基因组DNA上,胞嘧啶和鸟嘌呤可以随机地向其它三个碱基转变。这一新方法可以对细胞内的特定DNA序列进行多样化,完成遗传筛选,从而分析单核苷酸突变的功能。同时在一种多肽抑制剂的辅助下,dCas9-AID可以诱导特定的胞嘧啶向胸腺嘧啶转变,实现单碱基的精确编辑。该研究团队进一步证明,利用这一方法可以快速有效地模拟肿瘤细胞体内耐药机制的异质性,预测可能的肿瘤耐药性突变,进而改良小分子抑制剂和研究小分子与蛋白质靶点的相互作用。该研究成果为分子进化、基因治疗和在单碱基水平上分析基因调控元件等领域提供新的方法。

DNA碱基编辑的新方法

原文链接:

Targeted AID-mediated mutagenesis (TAM) enables efficient genomic diversification in mammalian cells

原文摘要:

A large number of genetic variants have been associated with human diseases. However, the lack of a genetic diversification approach has impeded our ability to interrogate functions of genetic variants in mammalian cells. Current screening methods can only be used to disrupt a gene or alter its expression. Here we report the fusion of activation-induced cytidine deaminase (AID) with nuclease-inactive clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (dCas9) for efficient genetic diversification, which enabled high-throughput screening of functional variants. Guided by single guide (sg)RNAs, dCas9-AID-P182X (AIDx) directly changed cytidines or guanines to the other three bases independent of AID hotspot motifs, generating a large repertoire of variants at desired loci. Coupled with a uracil-DNA glycosylase inhibitor, dCas9-AIDx converted targeted cytidines specifically to thymines, creating specific point mutations. By targeting BCR-ABL with dCas9-AIDx, we efficiently identified known and new mutations conferring imatinib resistance in chronic myeloid leukemia cells. Thus, targeted AID-mediated mutagenesis (TAM) provides a forward genetic tool to screen for gain-of-function variants at base resolution.

沪ICP备2021019989号-3